High Voltage Power Transistor ## **Description:** High Voltage NPN Silicon Power Transistors are designed for line operated audio output amplifier, and switching power supply drivers applications. #### Features: - Collector-Emitter sustaining voltage- 250V 400V (Min.) - · 1A Rated collector current - f_T = 10MHz (Min.) at I_C = 200mA ## **Maximum Ratings** | Characteristic | Symbol | TIP47 | TIP50 | Unit | |---|-----------------------------------|--------|---------|------| | Collector-Emitter Voltage | V _{CEO} | 250 | 400 | | | Collector-Base Voltage | V _{CBO} | 350 | 500 | V | | Emitter-Base Voltage | V _{EBO} | 5 | | | | Collector Current-Continuous -Peak | I _C | 2 | 1 | Α | | Base Current | I _B | 0.6 | | | | Total Power Dissipation at T _C = 25°C
Derate above 25°C | P _D | | 0
32 | W/°C | | Operation and Storage Junction Temperature Range | T _J , T _{STG} | -65 to | +150 | °C | ### **Thermal Characteristics** | Characteristic | Symbol | Max. | Unit | |-------------------------------------|---------------|-------|------| | Thermal Resistance Junction to Case | $R_{ hetajc}$ | 3.125 | °C/W | # High Voltage Power Transistor Multicomp PRO # Electrical Characteristics (T_C = 25°C unless otherwise noted) | Characteristic | Symbol | Min. | Max. | Unit | |---|-----------------------|------------|------|------| | OFF Characteristics | | | | | | Collector-Emitter Sustaining Voltage (1) $I_C = 30\text{mA}, I_B = 0$ TIP47 TIP50 | V _{CEO(sus)} | 250
400 | - | V | | Collector Cut off Current $V_{CE} = 150V, I_{B} = 0$ TIP47 $V_{CE} = 300V, I_{B} = 0$ TIP50 | I _{CEO} | - | 1 | mA | | Collector Cut off Current $V_{CE} = 350V$, $V_{EB} = 0$ TIP47 $V_{CE} = 500V$, $V_{EB} = 0$ TIP50 | I _{CES} | - | 1 | | | Emitter Cut off Current $V_{EB} = 5V$, $I_{C} = 0$ | I _{EBO} | - | 1 | | | ON Characteristics (1) | | | | | | DC Current Gain $I_C = 0.3A$, $V_{CE} = 10V$ $I_C = 1.0A$, $V_{CE} = 10V$ | h _{FE} | 30
10 | 150 | - | | Collector-Emitter Saturation Voltage $I_C = 1A$, $I_B = 200$ mA | V _{CE(sat)} | - | 1 | V | | Base-Emitter On Voltage $I_C = 1A$, $V_{CE} = 10V$ | V _{BE(on)} | - | 1.5 | | | Dynamic Characteristics | | | | - | | Current Gain-Bandwidth Product (2)
$I_C = 200mA, V_{CE} = 10V, f_{TEST} = 2MHz$ | f _T | 10 | - | MHz | ⁽¹⁾ Pulse Test: Pulse width ≤300µs, Duty Cycle ≤2% Small Signal Current Gain $I_C = 200 \text{mA}, V_{CE} = 10 \text{V}, f = 1 \text{kHz}$ h_{FE} 25 ⁽²⁾ $f_T = h_{FE} \cdot f_{TEST}$ # High Voltage Power Transistor # multicomp PRO Figure - 2 DC Current Gain 200 100 T_J = 150 °C 25 °C 25 °C 25 °C 25 °C 25 °C 25 °C 0.02 0.05 0.1 1.0 0.5 0.2 0.1 0.05 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.03 0.04 0.05 0.05 0.05 0.06 0.07 0.07 0.08 0.09 Figure - 3 Turn-On Time Figure - 4 "ON" Voltages I_c, Collector Current (Amp) 0.2 0.3 2.0 1.0 Figure - 5 Turn-Off Time Figure - 6 Active Region Safe Operating Area There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown safe operating area curves indicate I_C - V_{CE} limits of the transistor that must be observed for reliable operation i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure - 6 curve is based on $T_{J(PK)}$ = 150°C; T_{C} is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(PK)}$ ≤150°C. At high case temperatures, thermal limitation will reduce the power that can be handled to values less than the limitations imposed by second breakdown. # High Voltage Power Transistor Multicomp PRO ### Pin Configuration: - 1. Base - 2. Collector - 3. Emitter - 4. Collector(Case) | Dimensions | Min. | Max. | |------------|-------|-------| | Α | 14.68 | 15.31 | | В | 9.78 | 10.42 | | С | 5.01 | 6.52 | | D | 13.06 | 14.62 | | E | 3.57 | 4.07 | | F | 2.42 | 3.66 | | G | 1.12 | 1.36 | | Н | 0.72 | 0.96 | | 1 | 4.22 | 4.98 | | J | 1.14 | 1.38 | | K | 2.2 | 2.97 | | L | 0.33 | 0.55 | | M | 2.48 | 2.98 | | 0 | 3.7 | 3.9 | Dimensions: Millimetres ### **Part Number Table** | Description | Part Number | | |-------------------------|-------------|--| | Transister NDN TO 220 | TIP47 | | | Transistor, NPN, TO-220 | TIP50 | | Important Notice: This data sheet and its contents (the "Information") belong to the members of the AVNET group of companies (the "Group") or are licensed to it. No licence is granted for the use of it other than for information purposes in connection with the products to which it relates. No licence of any intellectual property rights is granted. The Information is subject to change without notice and replaces all data sheets previously supplied. The Information supplied is believed to be accurate but the Group assumes no responsibility for its accuracy or completeness, any error in or omission from it or for any use made of it. Users of this data sheet should check for themselves the Information and the suitability of the products for their purpose and not make any assumptions based on information included or omitted. Liability for loss or damage resulting from any reliance on the Information or use of it (including liability resulting from negligence or where the Group was aware of the possibility of such loss or damage arising) is excluded. This will not operate to limit or restrict the Group's liability for death or personal injury resulting from its negligence. Multicomp Pro is the registered trademark of Premier Farnell Limited 2019.